

JFace Databinding
Frank Gerhardt
Michael Scharf
Boris Bokowski

Data Binding
Vision: Get rid of listeners in UI code.

Why?
– Hard to write, hard to maintain
– For every aspect:

● Copy initial state into widget
● Hook listener (to widget, to model)
● Write code that sync's state incrementally
● Validation, conversion typically not

separated
● threading

Triangle -> Straight Line
● From model-view-controller (MVC)

triangle to more independence

From David Orme, Introducing JFace Data Binding, EclipseCon 2006, made available under EPL 1.0

Concepts

ModelView Observable ObservableBinding

Listen

data flow

Framework Code

Running Example: RCP
Mail
● RCP Mail is the

base of our data
binding example

● We added some
GUI elements to
show various
bindings

RCP Mail enhanced

5. Binding
of tree viewer

6b. Binding
of table
viewer

3.Binding text field
to string and int property

4. Validation errors
collected in title area

6a. Updating the table
based on selection
in tree

7b. Binding subject,
from, date to labels

7a. Master-detail from
message list to message

2. Add a wizard dialog1. Introduce model

8. LinkObservableValue

9. Mark As Spam (Action)

RCP Mail enhanced
1. Introduce model

PropertyChange Support

● No other requirements

RCP Mail enhanced

3.Binding text field
to string and int property

2. Add a wizard dialog1. Introduce model

Architecture with DB

Binding
Text field

Text field

List

Binding

Binding

Custom
Controller
for UI logicButton

Controller layer

firstName

Model object, e.g. Person

lastName

phoneNumbers

double-click

select

e.g. delete phone number

E.g. en-/disable delete button
based on selection.
When clicked, delete
selected phone number

e.g. delete(aPhoneNumber)

GUI

RCP Mail enhanced

4. Validation errors
collected in title area

Converters & Validators

Text widget

text
Binding

phoneNumber

String2PhoneNumberConverter

After Get Validator After Convert Validator

Before Set Validator

Person

The Binding can be configured:
model to target update strategy
target to model update strategy
each with: 1 Converter and
 3 Validators

Update Strategy (automatic/manual)
Target to model

RCP Mail enhanced

5. Binding
of tree viewer

Note: non-API in 3.3

● TreeViewer support will be in 3.4
● Internal/provisional as of 3.3

RCP Mail enhanced

6b. Binding
of table
viewer

6a. Updating the table
based on selection
in tree

RCP Mail enhanced

7b. Binding subject,
from, date to labels

7a. Master-detail from
message list to message

Master-Detail Binding

RCP Mail enhanced

8. LinkObservableValue

Factories

● Observables
● BeansObservables
● SWTObservables
● ViewersObservables
● MasterDetailObservables

● ...add your own!

RCP Mail enhanced

9. Mark As Spam (Action)

Benefits
● Provides structure
● Makes it easy to create multiple views

onto the same model objects
● Setting up bi-directional bindings as

easy as the uni-directional case
● If your model is changed from a non-UI

thread
● Master-detail – just try coding it by hand
● Makes it easy to reuse validation code

Disadvantages
● Learning curve
● Generic implementation makes it

complex (create your own helper
classes!)

● Overhead (space and time)
● Requires model that fires change

events
● Hard to debug when things go wrong

Recap: Features (1)
● IObservable and Binding

– Source and target are wrapped
● No superclasses or interfaces required

– Standard Java beans, with PropertyChangeEvents
– Other models possible (e.g. EMF, ...)
– Even other UI toolkits (e.g. GWT, Swing, ...)

● Bindings are set up once
– Careful design can avoid rebinding (master-detail)

● Validators: context collects validation errors
● Converters : model-to-UI, UI-to-model
● Pluggable update strategies

(immediately, when validation is ok, manual, custom)

Recap: Features (2)

● Binding of
– Values (String, Boolean, Integer...), 1:1
– Lists, n:n
– Master-Detail

● Can bind to UI state
– Model.locked to Text.enabled
– Color, visibility, many more

● Can bind to UI state, selection of list or
table
– Zero additional UI logic required

● Can bind to validation errors

Non-Features

● Can only bind to one level of
properties
– Not a.b.c directly
– need to bind a-b and b-c
– Workaround only for values (1:1), not

for lists (n:n)
● Trees are not supported well

– Internal, provisional
● Little documentation, only examples

How-to
● Decide which type to use

– Value (1:1), list (n:n), master detail

● For values
– Wrap model into Observable using

BeansObservables Factory
– Wrap UI into Observable using

SWTObservables or ViewerObservables

● For lists
– Use supplied ContentProvider and

setInput

Examples
● From CVS

:pserver:anonymous@dev.eclipse.org:/cvsroot/eclipse/org.eclipse.jface.examples.databinding

Resources
● JFace Databinding Wiki page

– http://wiki.eclipse.org/index.php/JFace_Data_Binding

● Newsgroup
– eclipse.platform with [DataBinding] in

subject

● Bugzilla
– Product=Platform, Component=UI,

Summary with [DataBinding]

● Examples from CVS

http://wiki.eclipse.org/index.php/JFace_Data_Binding

Copyright
© 2008 Gerhardt Informatics Kft./
Michael Scharf, WindRiver/
IBM Rational Software

Distributed under Creative Commons
Attribution-Noncommercial-Share Alike
3.0 United States License
http://creativecommons.org/licenses/by-nc-sa/3.0/us

http://creativecommons.org/licenses/by-nc-sa/3.0/us

